About the Pilot Research Program

The CNPRC Pilot Research Program provides an administrative mechanism by which Principal Investigators in any discipline, and particularly those that are not closely related to the Center’s categorical Research Units, may have full opportunity to use the Center’s resources. This program serves as a resource to the entire biomedical research community, including regional, national and international researchers. The objectives of the program are to provide resources (including Core Scientist expertise) and facilities for primate research to Principal Investigators who are not CNPRC Core Scientists, and to provide the expertise to affiliates in all facets of the on-site portion of primate research.

Pilot research projects are to be used for generating preliminary data for submission of NIH grant proposals, with the goal of supporting new, extramurally-funded research utilizing nonhuman primate models of human disease. Proposals to the highly competitive program are evaluated for scientific merit (significance, approach, innovation) and likelihood of the project leading to a successful NIH grant application.

The CNPRC Pilot Research Program is targeted for scientists new to nonhuman primate research and particularly encourages junior investigators to apply.

The 2016 Call for Pilot Project Letters of Intent can be downloaded here.

The deadline for Letters of Intent is February 15, 2016.   Full proposals will be requested from a subset of Letters of Intent.  Applicants should note that this process is competitive at two levels, for both the Letters of Intent and the full proposals.

Questions about the CNPRC Pilot Program may be emailed to the Associate Director of Research:  lmiller@ucdavis.edu

2015-2016 Pilot Research Program Recipients

Establishing a method for repeated intracerebral infusions of Aβ oligomers in rhesus monkeys.” Alzheimer’s disease is believed to be caused by the toxic actions on brain cells of a specific form of the beta-amyloid (A-beta) protein, the ‘oligomeric’ form. A-beta oligomers can cause changes in brain cells that resemble those seen in Alzheimer’s disease, when given to monkeys but not to rodents. Our pilot study will help us understand this phenomenon, particularly whether less frequent administration of A-beta oligomers still causes damage to brain cells. This will form the foundation of a study of whether the female sex hormone estradiol can protect brain cells in the living, intact primate brain from the Alzheimer’s-like damage caused by A-beta oligomers, directly testing the hypothesis that a specific hormone treatment in postmenopausal women may have a protective effect against developing Alzheimer’s disease.

Dr. Mark Baxter, Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY
Intestinal commensal bacteria direct host resistance to pneumonia in neonates.” Human neonates are often treated with empiric antibiotics within the first week of birth. This interrupts the colonization of the neonatal intestine by commensal bacteria and is paradoxically associated with increased mortality for the neonate in form of pneumonia. This added an estimated $1.4 billion annually to the cost of treating preterm infants. Our long-term goal is to understand how excess antibiotic use contributes to increased risk of pneumonia. Our overall hypothesis is that intestinal commensal bacteria direct the development and functional maturation of innate immune cells. The proposed studies will establish a non-human primate model of neonatal pneumonia. We will test if commensal intestinal bacteria direct the accumulation of phenotypically and functionally distinct innate immune cells in the lungs and interrogate the functional significance of intestinal commensal bacteria in maintaining lung homeostasis. These studies will complement our results from neonatal mice and preterm humans. This will further our understanding of how intestinal colonization by commensal bacteria is a requisite for appropriate immune response in neonates.
Dr. Hitesh Deshmukh, M.D., Ph.D., Cincinnati Children's Hospital Medical Center, Cincinnati, OH
Comprehensive gene expression profiling of the developing macula in nonhuman primates: understanding cone photoreceptor differentiation”
Dr. Anna La Torre, Ph.D., UC Davis School of Medicine, Davis, CA
lnterruption of HIV-1 sexual transmission by small-molecule CD4-mimetic compounds.” Preventing sexual transmission of human immunodeficiency virus (HIV-1) is essential for stopping the global epidemic of acquired immunodeficiency syndrome (AIDS). We have discovered chemical compounds that block the entry of HIV-1 into cells and inactivate the virus. We will test whether these compounds can protect female monkeys from a simulated sexual exposure to an HIV-1-like virus. If successful, these studies could lead to approaches that prevent HIV-1 sexual transmission in humans.
Dr. Joseph Sodroski, M.D., Dana-Farber Cancer Institute, Boston, MA

2014-2015 Pilot Research Program Recipients

The fate of inhaled statins in the lung and systemic circulation”  The ultimate goal of this study is to develop novel inhaler therapies for lung diseases such as asthma, chronic bronchitis, and emphysema.  We aim to use the ‘statins’, which are widely used drugs for the treatment of cardiovascular diseases, to reduce airway inflammation and scarring. Our initial pilot studies using a nonhuman primate model will test drug deposition in the lung and its metabolism, effect on lung immune cell populations, and the safety of inhaled simvastatin and pravastatin, two commonly used oral drugs in humans. If successful, this work may establish a new class of inhaler therapy for the treatment of chronic airway diseases in humans.
Dr. Amir Zeki, M.D., School of Medicine, UC Davis, Davis, CA
April 8, 2015: Read more about Dr. Amir Zeki, 2014 Pilot Research Program RecipientAmirZeki,-K.West2015,-01
A rhesus macaque immunogenicity model to investigate the effect of binding of complement factor H on meningococcal factor H binding protein vaccines”  Vaccines for prevention of sepsis and meningitis caused by meningococci are available against serogroup A, C, W and Y but not B strains. Investigators at Children’s Hospital Oakland Research Institute (CHORI) and CNPRC are conducting a pilot study in nonhuman primates to determine the effect of binding of a host protein (complement Factor H) to a vaccine antigen known as Factor H binding protein (FHbp). This antigen is a component of two serogroup B vaccines being developed in the U.S.; one of these vaccines (Bexsero®, Novartis) recently was provided to two Universities in the U.S. for control of meningococcal outbreaks. This study is expected to provide valuable information for development of improved FHbp vaccines for humans with increased safety and efficacy against meningococcal disease.
Dr. Peter Beernink, Ph.D., Children's Hospital Oakland Research Institute, Oakland, CA
Potential new model for childhood gastroenteritis”  Astroviruses are major causes of diarrhea worldwide, especially in the young, elderly, and immunocompromised. Yet, we have no “cure” for these constantly changing viruses. Once of the biggest hurdles to developing new therapies has been the lack of animal models that support human astrovirus infection. Through our pilot project, we hope to develop the first animal model to study this important cause of childhood gastroenteritis.
Dr. Stacey Schultz-Cherry, Ph.D., St. Jude Children's Research Hospital, Memphis, TN

2013-2014 Pilot Research Program Recipients

Role of oxytocin signaling in the amelioration of diet-induced obesity in nonhuman primates”  The recent surge in the obesity epidemic is attributed, in part, to increased intake of high fructose corn syrup. Existing weight loss strategies are woefully ineffective and there is an urgent need for improved treatments for these diseases. While oxytocin is well known for its effects on reproductive behavior, it has gained recent attention for its therapeutic potential in the treatment of obesity in diet-induced obese (DIO) rodents. The overarching goal of this California National Primate Research Center Pilot Program project is to translate these findings from the laboratory to pre-clinical studies, and to test the hypothesis that chronic administration of oxytocin is a potential therapy that can reduce food intake and body weight in DIO nonhuman primates maintained on a high fructose diet. The data gained from this study will be critical to launch future work examining the mechanism by which oxytocin suppresses body weight and its efficacy for long-term weight management.
Dr. James Blevins, Ph.D., School of Medicine, University of Washington, Seattle, WA
Determination of age-related effects on mesenchymal stem/stromal cell (MSC) function on hematopoietic stem cell (HSC) engraftment and B cell regeneration in the rhesus monkey, Macaca mulatta”  Mesenchymal stromal cells (MSCs) are cells in the bone marrow that serve dual functions: they are precursors of mature bone and they also support hematopoietic stem cells (HSCs) from which all blood cell types are derived. In recent years, MSCs have been proposed to regulate immune responses as well as facilitate the engraftment of HSCs after transplantation in the bone marrow. Our proposed studies aim to understand the mechanisms that control cellular “crosstalk” between MSCs and HSCs. Using a clinically relevant nonhuman primate model, we will investigate age-related changes in MSCs and whether these changes affect HSC behavior, including the potential effects of nonmyeloablative conditioning typically used prior to HSC transplantation on MSC function.
Dr. Jennifer O. Manilay, Ph.D., School of Natural Sciences, UC Merced, Merced, CA
Lung regeneration following partial pneumonectomy in macaques”  Lung diseases, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, and pulmonary fibrosis, are a major cause of sickness and death. There are very few treatment options for patients with advanced lung disease. We hope to identify stem cells in the adult lung that have the ability to repair damaged lung tissue. A deeper understanding of these cells has the potential to lead to new cellular and molecular therapies for lung disease.
Dr. Jason Rock, Ph.D., School of Medicine, UC San Francisco, San Francisco, CA